
20 570684 Ch15.qxd 3/31/04 3:00 PM Page 188

188 Part III: Giving Your Programs the Ability to Run Amok

See? Repetition doesn’t hurt the PC. Not one bit.

� The for loop has a start, a middle, and an end. The middle part is the
printf() statement — the part that gets repeated. The rest of the loop,
the start and end, are nestled within the for keyword’s parentheses.
(The next section deciphers how this stuff works.)

� Just as with the if structure, when only one statement belongs to the
for command, you could write it like this:

for(i=0 ; i<5 ; i=i+1)
printf(“Ouch! Please, stop!\n”);

The curly braces aren’t required when you have only one statement
that’s repeated. But, if you have more than one, they’re a must.

� The for loop repeats the printf() statement five times.

� Buried in the for loop is the following statement:

i=i+1

This is how you add 1 to a variable in the C language. It’s called incre
mentation, and you should read Chapter 11 if you don’t know what it is.

� Don’t worry if you can’t understand the for keyword just yet. Read
through this whole chapter, constantly muttering “I will understand this
stuff” over and over. Then go back and reread it if you need to. But read
it all straight through first.

For doing things over and over,
use the for keyword
The word for is one of those words that gets weirder and weirder the more
you say it: for, for, fore, four, foyer. . . . For he’s a jolly good fellow. These are
for your brother. For why did you bring me here? An eye for an eye. For the
better to eat you with, my dear. Three for a dollar. And on and on. For it can
be maddening.

In the C programming language, the for keyword sets up a loop, logically called
a for loop. The for keyword defines a starting condition, an ending condition,
and the stuff that goes on while the loop is being executed over and over. The
format can get a little deep, so take this one step at a time:

for(starting; while_true; do_this)
statement;

